蓝晶石粉可以在低于1350℃下发生转化反应产生较小体积膨胀,中间包引流砂析出的SiO2又可与材料中的α-Al2O3反应生成莫来石,这样也有助于结合。如果在液相范围内产生膨胀,那么膨胀会引起液体的移动,浇注料的许多空隙可能被液体填充。所以莫来石的生成不仅能够提高浇注料的结构强度,改善烧后线变化,宁波引流砂而且还能部分消除浇注料在高温和冷却过程中产生的收缩裂缝,从而提高浇注料的使用寿命,所以,在细粉中应添加适量的蓝晶石粉。但其加入量过大时,导致浇注料剥落,故其加入量以10%左右为宜。
镁铬砖是含MgO 55%?80%、钢包用镁碳砖Cr2O3 8%?20%的碱性耐火材料制品转炉用镁碳砖电炉喷补料,转炉用镁碳砖以方镁石、复合尖晶石及少量硅酸盐相所构成。复合尖晶石包括MgAl2O4、MgFe2O4、MgCr2O4和FeAl2O4等尖晶石固溶体。镁铬砖在20世纪60年代以后由于原料纯度和烧成温度的提高而得到迅速发展,目前镁铬砖按生产方法的不同可分为普通砖、直接结合砖、共同烧结砖、再结合砖和熔铸砖等。这是传统产品,以铬矿做粗颗粒,镁砂做细粉。或者是两种材料采用级配颗粒组成,烧成温度一般为1550,1600℃。
生产MgO-C砖常用的结合剂有煤焦油,煤沥青和石油沥青,以及特殊碳质树脂,多元醇,沥青变性酚醛树脂,合成树脂等。目前所用到的结合剂有以下几种类型:沥青类物质。焦油沥青是一种热塑性材料,具有与石墨、氧化镁亲和力大,炭化后残碳率高,成本低的特点,过去曾大量使用;但是焦油沥青中含有致癌的芳香烃,尤其是苯并茁含量高;由于环境意识的加强,现在焦油沥青的使用量在减少。树脂类物质。合成树脂是由苯酚和甲醛反应制得,在常温下便能和耐火材料颗粒很好的混合,炭化后残碳率高,是当前生产MgO-C砖用主要结合剂;但它炭化后形成的玻璃态网络结构,对耐火材料的抗热震性和抗氧化性都不理想。
碳质制品是另一类中性耐火材料,根据含碳原料的成分和制品的矿物组成,分为碳砖、石墨制品和碳化硅质制品三类。碳砖是用高品位的石油焦为原料,加焦油、沥青作粘合剂,在1300℃隔绝空气条件下烧成。石墨制品(除天然石墨外)用碳质材料在电炉中经2500~2800℃石墨化处理制得。碳化硅制品则以碳化硅为原料,加粘土、氧化硅等粘结剂在1350~1400℃烧成。也可以将碳化硅加硅粉在电炉中氮气氛下制成氮化硅-碳化硅制品。
制作的这种耐火砖的细粉是采用由普通铬矿与镁砂磨细、混匀、压坯、煅烧后的镁铬料,仍为硅酸盐结合。但性能较普通镁砖有改进。直接结合镁砖,是由杂质含量低的铬精矿与较纯镁砂制作的。烧成温度在1700℃以上。该种耐火砖的结构特点是,耐火物晶粒之间多呈直接接触。因此其高温性能、抗侵蚀与抗冲刷都较普通镁铬砖好。再结合镁铬砖,国外常将全由人工合成原料共烧结镁铬料或电熔镁铬料(或加有部分电熔镁砂)制作的镁铬砖皆称为再结合镁铬砖。而国内只将全用电熔镁铬料制作的镁铬砖称为再结合镁铬砖。为了与国际上较为一致,以采用共烧结镁铬砖与电熔料再结合镁铬砖或熔粒再结合镁铬砖为宜。
订单下滑、产能过剩正在逼迫耐火材料行业加快转型,镁碳砖厂家更多环保型产品的研发以及去年以来基建投资的加码使得行业正迎来新的转机。进入新世纪(002280,股吧)以来,耐火材料行业得到了快速发展。全国耐火原材料产量从2000年的1000多万吨增长到现在的每年6000多万吨。2012年耐火材料产量2818万吨,约占世界耐材产量的65%以上,出口量为203.97万吨。但是受下游行业固定投资减弱、基建用耐火材料需求量减少等因素影响,2012年耐火材料企业订单数量减少、销量下降,加之资金紧张,企业不得不关停窑炉消耗原有库存。